
Select Solutions
to JavaScript Coding Activity

Add a background image to the scene.

• In the styles.css file, the size of the gameWindow is set:

• Use PhotoShop, Illustrator, or some other software to create an

image with an 800px width and a 400px height.

• Alternatively, you could create a smaller image that has no seams

when tiled. Consider the sky image below.

• You can tell by looking at the sides that the image will tile
without showing a seam. The image is repeated three times below.

• Once ready, save the image in the images folder of the project.

• To skip the challenge and use the sky image.

• Delete the CSS that sets the background-color of the gameWindow

and add in the CSS that sets the background-image using the name

and location of the file you created.

• When you refresh the page to play the game again, the image

should appear!

http://jacobenfield.com/courses/WebBasedGameDev/lesson51/platformer/saveDrE/images/sky.jpg

• You may also want to set the size of your image in CSS, though

this may pixelate the image if the resolution is low. You may

change the image size using the background-size property. In the

code snippet below, the size of the image is set to be twice as

large.

• And that, my friends, is how you add a background image to the

game

Modify the speed or jump ability of the

player character.

• In the engine.js file, the “player character” element is

represented by the variable pc. In the init() function you can

see where the JUMP_FORCE and SPEED properties of the pc element

are initialized.

• Simple change these values to your liking. Save the file and

refresh the game. I thought the following values work well.

• And that, my friends, is how you modify the speed and jump

ability of the player character.

Add platforms and “Spikey Guys” to build

out full levels.

• The code for setting up each level can be found in the

nextLevel() function of the engine.js file. The code for level 1

is shown below.

• Notice the addPlatform() function is used to add platforms and

the addSpikeyGuy() is used to add “spikey guys”.

• What do all these numbers mean though? You can figure this out

by looking at the variable names in the function definitions

found later in the code. Consider first the definition of the

addPlatform() function.

• The first two arguments (or parameters) are used for setting the

position of the top left corner of the platform while the last

two arguments are used to set the size of the platform.

➢ The first argument is the x value, or the horizontal

location of the platform.

➢ The second argument is the y value, or the vertical

location of the platform.

➢ The third argument represents the width of the platform.

➢ The fourth argument represents the height of the platform.

• It is important when positioning elements to understand that the

origin is at the top-left corner of the gameWindow so increasing

the x value moves the platform to the right while increasing the

y value moves the platform down.

• Consider the following line of code

• The command adds a platform whose top-left corner is positioned

in the gameWindow at (0, 40). That is 0 pixels from the left and

40 pixels from the top. The size of the platform is set to a

width of 150 pixels and a height of 20 pixels.

• Adding Spikey Guys requires passing the x and y to set the

location. As all Spikey Guys are intended to be the same size,

the function has no arguments related to the width and height.

• And that, my friends, is how you add platforms and “Spikey Guys”

to build out complete levels for the game. This tedious task may

be simplified by planning out your levels using graph paper.

https://www.waterproofpaper.com/graph-paper/graph-paper-eighth-inch.pdf

Add a countdown timer for each level.
• Many of the elements in the gameWindow are added through

JavaScript, but some are added directly in HTML as you can see by
looking at the index.html file.

• Add a DIV element that will show the number of seconds remaining
for the level being played. Give the DIV an id that describes
the element and temporarily enter some text so you will be able
to see how it looks in the game.

• In the styles.css file, add CSS properties to style the DIV
element as you wish.

• Be sure to save the HTML and CSS files. With the CSS above, the
time will be displayed at the top in front of the hearts.

• Once you have the time showing the way you want, remove the
temporary text that you had placed in the txtTime DIV.

• In the engine.js file, declare a txtTime variable at the top of
the code that will be used to reference the txtTime DIV element
and a time variable that will store the number of seconds
remaining.

• In the init() function, initialize the value of the txtTime
value. It may be logical to do this just before the line that
sets the value of the txtLevel variable.

•
• In the nextLevel() function, set the value of time in each if

statement. For instance, if you want to allow 30 seconds to
complete level 1, you would write:

• Be sure to set the time for all your levels.

• When should we reduce the number of seconds? One method is to set
up a function that executes every one second. This would be done
similarly to how the gameTimer was set up to run the gameloop()
function every 50 milliseconds to create a framerate of 20 frames
per second).

• To do this, declare a countdownTimer variable at the top of the
code.

• At the bottom of the nextLevel() function, use setInterval() to
start a timer so that it executes the reduceTime() function that
we will create next every second (i.e. 1000 milliseconds).

• This is also a good place to update the time in the txtTime DIV
so that the DIV will not be empty at the start of the game.

• Create the reduceTime() function that will be executed every
second.

➢ Be sure not to write this code inside the code block of
another function. It could be written between the end of
the nextLevel() function and before the beginning of the
addLife() function.

• This function reduces the time by one, updates the txtTime DIV to
show the new time, and then calls the die() function if the time
is less than or equal to zero.

• Finally, we need to stop the timer at the appropriate times so
the time does not continue decreasing when it should not be. In
the die() function, add a clearInterval() for the countdownTimer.

• And towards the end of the gameloop() function, add another
clearInterval() to stop the countdown timer when the player runs
into Dr. Enfield.

• Now the countdown should be working, displaying, and the player
should be dying when the time runs out.

